Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Asian J Androl ; 23(6): 580-589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34528517

RESUMO

The synaptonemal complex (SC) is a meiosis-specific proteinaceous macromolecular structure that assembles between paired homologous chromosomes during meiosis in various eukaryotes. The SC has a highly conserved ultrastructure and plays critical roles in controlling multiple steps in meiotic recombination and crossover formation, ensuring accurate meiotic chromosome segregation. Recent studies in different organisms, facilitated by advances in super-resolution microscopy, have provided insights into the macromolecular structure of the SC, including the internal organization of the meiotic chromosome axis and SC central region, the regulatory pathways that control SC assembly and dynamics, and the biological functions exerted by the SC and its substructures. This review summarizes recent discoveries about how the SC is organized and regulated that help to explain the biological functions associated with this meiosis-specific structure.


Assuntos
Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Complexo Sinaptonêmico/fisiologia , Animais , Segregação de Cromossomos , Meiose/genética , Meiose/fisiologia
2.
Exp Cell Res ; 399(2): 112455, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33400935

RESUMO

During meiosis, homologous chromosomes exchange genetic material. This exchange or meiotic recombination is mediated by a proteinaceous scaffold known as the Synaptonemal complex (SC). Any defects in its formation produce failures in meiotic recombination, chromosome segregation and meiosis completion. It has been proposed that DNA repair events that will be resolved by crossover between homologous chromosomes are predetermined by the SC. Hence, structural analysis of the organization of the DNA in the SC could shed light on the process of crossover interference. In this work, we employed an ultrastructural DNA staining technique on mouse testis and followed nuclei of pachytene cells. We observed structures organized similarly to the SCs stained with conventional techniques. These structures, presumably the DNA in the SCs, are delineating the edges of both lateral elements and no staining was observed between them. DNA in the LEs resembles two parallel tracks. However, a bubble-like staining pattern in certain regions of the SC was observed. Furthermore, this staining pattern is found in SCs formed between non-homologous chromosomes, in SCs formed between sister chromatids and in SCs without lateral elements, suggesting that this particular organization of the DNA is determined by the synapsis of the chromosomes despite their lack of homology or the presence of partially formed SCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Meiose/fisiologia , Complexo Sinaptonêmico/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Cromátides/ultraestrutura , Pareamento Cromossômico/fisiologia , DNA/química , DNA/ultraestrutura , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , Complexo Sinaptonêmico/fisiologia , Complexo Sinaptonêmico/ultraestrutura
3.
Asian Journal of Andrology ; (6): 580-589, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-922375

RESUMO

The synaptonemal complex (SC) is a meiosis-specific proteinaceous macromolecular structure that assembles between paired homologous chromosomes during meiosis in various eukaryotes. The SC has a highly conserved ultrastructure and plays critical roles in controlling multiple steps in meiotic recombination and crossover formation, ensuring accurate meiotic chromosome segregation. Recent studies in different organisms, facilitated by advances in super-resolution microscopy, have provided insights into the macromolecular structure of the SC, including the internal organization of the meiotic chromosome axis and SC central region, the regulatory pathways that control SC assembly and dynamics, and the biological functions exerted by the SC and its substructures. This review summarizes recent discoveries about how the SC is organized and regulated that help to explain the biological functions associated with this meiosis-specific structure.


Assuntos
Animais , Segregação de Cromossomos , Meiose/fisiologia , Complexo Sinaptonêmico/fisiologia
4.
Plant Physiol ; 184(4): 1811-1822, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077613

RESUMO

The meiotic TopoVI B subunit (MTopVIB) plays an essential role in double-strand break formation in mouse (Mus musculus), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), and recent work reveals that rice MTopVIB also plays an unexpected role in meiotic bipolar spindle assembly, highlighting multiple functions of MTopVIB during rice meiosis. In this work, we characterized the meiotic TopVIB in maize (Zea mays; ZmMTOPVIB). The ZmmtopVIB mutant plants exhibited normal vegetative growth but male and female sterility. Meiotic double-strand break formation was abolished in mutant meiocytes. Despite normal assembly of axial elements, mutants showed severely affected synapsis and disrupted homologous pairing. Importantly, we showed that bipolar spindle assembly was also affected in ZmmtopVIB, resulting in triad and polyad formation. Overall, our results demonstrate that ZmMTOPVIB plays critical roles in double-strand break formation and homologous recombination. In addition, our results suggest that the function of MTOPVIB in bipolar spindle assembly is likely conserved across different monocots.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose/genética , Meiose/fisiologia , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/fisiologia , Zea mays/genética , Zea mays/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas
5.
Nucleic Acids Res ; 47(11): 5670-5683, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30949703

RESUMO

Meiosis is a specialized cell division for producing haploid gametes from diploid germ cells. During meiosis, synaptonemal complex (SC) mediates the alignment of homologs and plays essential roles in homologous recombination and therefore in promoting accurate chromosome segregation. In this study, we have identified a novel protein SCRE (synaptonemal complex reinforcing element) as a key molecule in maintaining the integrity of SC during meiosis prophase I in mice. Deletion of Scre (synaptonemal complex reinforcing element) caused germ cell death in both male and female mice, resulting in infertility. Our mechanistic studies showed that the synapses and SCs in Scre knockout mice were unstable due to the lack of the SC reinforcing function of SCRE, which is sparsely localized as discrete foci along the central elements in normal synaptic homologous chromosomes. The lack of Scre leads to meiosis collapse at the late zygotene stage. We further showed that SCRE interacts with synaptonemal complex protein 1 (SYCP1) and synaptonemal complex central element 3 (SYCE3). We conclude that the function of SCRE is to reinforce the integrity of the central elements, thereby stabilizing the SC and ensuring meiotic cell cycle progression. Our study identified SCRE as a novel SC fastener protein that is distinct from other known SC proteins.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Prófase Meiótica I , Proteínas Nucleares/fisiologia , Complexo Sinaptonêmico/fisiologia , Animais , Sistemas CRISPR-Cas , Segregação de Cromossomos , Proteínas de Ligação a DNA , Feminino , Células HEK293 , Humanos , Masculino , Meiose , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Ligação Proteica , Recombinação Genética , Espermatócitos/metabolismo , Testículo/metabolismo
6.
Curr Biol ; 28(20): 3199-3211.e3, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30293721

RESUMO

The conserved factor Shugoshin is dispensable in C. elegans for the two-step loss of sister chromatid cohesion that directs the proper segregation of meiotic chromosomes. We show that the C. elegans ortholog of Shugoshin, SGO-1, is required for checkpoint activity in meiotic prophase. This role in checkpoint function is similar to that of conserved proteins that structure meiotic chromosome axes. Indeed, null sgo-1 mutants exhibit additional phenotypes similar to that of a partial loss-of-function allele of the axis component, HTP-3: premature synaptonemal complex disassembly, the activation of alternate DNA repair pathways, and an inability to recruit a conserved effector of the DNA damage pathway, HUS-1. SGO-1 localizes to pre-meiotic nuclei when HTP-3 is present but not yet loaded onto chromosome axes and genetically interacts with a central component of the cohesin complex, SMC-3, suggesting that it contributes to meiotic chromosome metabolism early in meiosis by regulating cohesin. We propose that SGO-1 acts during pre-meiotic replication to ensure fully functional meiotic chromosome architecture, rendering these chromosomes competent for checkpoint activity and normal progression of meiotic recombination. Given that most research on Shugoshin has focused on its regulation of sister chromatid cohesion during chromosome segregation, this novel role may be conserved but previously uncharacterized in other organisms. Further, our findings expand the repertoire of Shugoshin's functions beyond coordinating regulatory activities at the centromere.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Meiose , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Prófase , Complexo Sinaptonêmico/fisiologia
7.
Methods Cell Biol ; 145: 335-346, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29957213

RESUMO

This chapter describes how two different superresolution microscopy techniques, namely, structured illumination microscopy and direct stochastic optical reconstruction microscopy, can be used to analyze the molecular architecture of the synaptonemal complex. The experimental protocols provided allow the construction of precise localization maps for different synaptonemal complex proteins.


Assuntos
Microscopia de Fluorescência/métodos , Complexo Sinaptonêmico/fisiologia , Animais , Camundongos
8.
Biol Res ; 50(1): 38, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29169375

RESUMO

BACKGROUND: The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains and consequently is prone to modification by chromosomal rearrangements. We have shown that nuclear architecture is modified in spermatocytes of Robertsonian (Rb) homozygotes of Mus domesticus. In this study we analyse the synaptic configuration of the quadrivalents formed in the meiotic prophase of spermatocytes of mice double heterozygotes for the dependent Rb chromosomes: Rbs 11.16 and 16.17. RESULTS: Electron microscope spreads of 60 pachytene spermatocytes from four animals of Mus domesticus 2n = 38 were studied and their respective quadrivalents analysed in detail. Normal synaptonemal complex was found between arms 16 of the Rb metacentric chromosomes, telocentrics 11 and 17 and homologous arms of the Rb metacentric chromosomes. About 43% of the quadrivalents formed a synaptonemal complex between the heterologous short arms of chromosomes 11 and 17. This synaptonemal complex is bound to the nuclear envelope through a fourth synapsed telomere, thus dragging the entire quadrivalent to the nuclear envelope. About 57% of quadrivalents showed unsynapsed single axes in the short arms of the telocentric chromosomes. About 90% of these unsynapsed quadrivalents also showed a telomere-to-telomere association between one of the single axes of the telocentric chromosome 11 or 17 and the X chromosome single axis, which was otherwise normally paired with the Y chromosome. Nucleolar material was associated with two bivalents and with the quadrivalent. CONCLUSIONS: The spermatocytes of heterozygotes for dependent Rb chromosomes formed a quadrivalent where four chromosomes are synapsed together and bound to the nuclear envelope through four telomeres. The nuclear configuration is determined by the fourth shortest telomere, which drags the centromere regions and heterochromatin of all the chromosomes towards the nuclear envelope, favouring the reiterated encounter and eventual rearrangement between the heterologous chromosomes. The unsynapsed regions of quadrivalents are frequently bound to the single axis of the X chromosome, possibly perturbing chromatin condensation and gene expression.


Assuntos
Nucléolo Celular/fisiologia , Espermatócitos/fisiologia , Espermatócitos/ultraestrutura , Complexo Sinaptonêmico/fisiologia , Cromossomo X/fisiologia , Cromossomo Y/fisiologia , Animais , Nucléolo Celular/genética , Heterocromatina/genética , Heterocromatina/fisiologia , Heterozigoto , Masculino , Prófase Meiótica I/genética , Prófase Meiótica I/fisiologia , Camundongos , Complexo Sinaptonêmico/genética , Telômero/genética , Telômero/fisiologia , Translocação Genética , Cromossomo X/genética , Cromossomo Y/genética
9.
Curr Opin Plant Biol ; 36: 95-102, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28258986

RESUMO

Meiotic recombination ensures the fertility of gametes and creates novel genetic combinations. Although meiotic crossover (CO) frequency is under homeostatic control, CO frequency is also plastic in nature and can respond to environmental conditions. Most investigations have focused on temperature and recombination, but other external and internal stimuli also have important roles in modulating CO frequency. Even less is understood about the molecular mechanisms that underly these phenomenon, but recent work has begun to advance our knowledge in this field. In this review, we identify and explore potential mechanisms including changes in: the synaptonemal complex, chromatin state, DNA methylation, and RNA splicing.


Assuntos
Troca Genética , Meiose , Estresse Fisiológico , Animais , Metilação de DNA , Complexo Sinaptonêmico/fisiologia
10.
Genetics ; 205(1): 155-168, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838628

RESUMO

The segregation of homologous chromosomes at the first meiotic division is dependent on the presence of at least one well-positioned crossover per chromosome. In some mammalian species, however, the genomic distribution of crossovers is consistent with a more stringent baseline requirement of one crossover per chromosome arm. Given that the meiotic requirement for crossing over defines the minimum frequency of recombination necessary for the production of viable gametes, determining the chromosomal scale of this constraint is essential for defining crossover profiles predisposed to aneuploidy and understanding the parameters that shape patterns of recombination rate evolution across species. Here, I use cytogenetic methods for in situ imaging of crossovers in karyotypically diverse house mice (Mus musculus domesticus) and voles (genus Microtus) to test how chromosome number and configuration constrain the distribution of crossovers in a genome. I show that the global distribution of crossovers in house mice is thresholded by a minimum of one crossover per chromosome arm, whereas the crossover landscape in voles is defined by a more relaxed requirement of one crossover per chromosome. I extend these findings in an evolutionary metaanalysis of published recombination and karyotype data for 112 mammalian species and demonstrate that the physical scale of the genomic crossover distribution has undergone multiple independent shifts from one crossover per chromosome arm to one per chromosome during mammalian evolution. Together, these results indicate that the chromosomal scale constraint on crossover rates is itself a trait that evolves among species, a finding that casts light on an important source of crossover rate variation in mammals.


Assuntos
Arvicolinae/genética , Segregação de Cromossomos , Troca Genética , Meiose/genética , Proteína 1 Homóloga a MutL/genética , Animais , Evolução Biológica , Evolução Molecular , Variação Genética , Genoma , Masculino , Camundongos , Proteínas Nucleares/genética , Filogenia , Recombinação Genética , Complexo Sinaptonêmico/fisiologia
11.
Biol. Res ; 50: 38, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1038780

RESUMO

BACKGROUND: The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains and consequently is prone to modification by chromosomal rearrangements. We have shown that nuclear architecture is modified in spermatocytes of Robertsonian (Rb) homozygotes of Mus domesticus. In this study we analyse the synaptic configuration of the quadrivalents formed in the meiotic pro- phase of spermatocytes of mice double heterozygotes for the dependent Rb chromosomes: Rbs 11.16 and 16.17. RESULTS: Electron microscope spreads of 60 pachytene spermatocytes from four animals of Mus domesticus 2n = 38 were studied and their respective quadrivalents analysed in detail. Normal synaptonemal complex was found between arms 16 of the Rb metacentric chromosomes, telocentrics 11 and 17 and homologous arms of the Rb metacentric chromosomes. About 43% of the quadrivalents formed a synaptonemal complex between the heterologous short arms of chromosomes 11 and 17. This synaptonemal complex is bound to the nuclear envelope through a fourth synapsed telomere, thus dragging the entire quadrivalent to the nuclear envelope. About 57% of quadrivalents showed unsynapsed single axes in the short arms of the telocentric chromosomes. About 90% of these unsynapsed quadrivalents also showed a telomere-to-telomere association between one of the single axes of the telocentric chromosome 11 or 17 and the X chromosome single axis, which was otherwise normally paired with the Y chromosome. Nucleolar material was associated with two bivalents and with the quadrivalent. CONCLUSIONS: The spermatocytes of heterozygotes for dependent Rb chromosomes formed a quadrivalent where four chromosomes are synapsed together and bound to the nuclear envelope through four telomeres. The nuclear configuration is determined by the fourth shortest telomere, which drags the centromere regions and heterochromatin of all the chromosomes towards the nuclear envelope, favouring the reiterated encounter and eventual rearrangement between the heterologous chromosomes. The unsynapsed regions of quadrivalents are frequently bound to the single axis of the X chromosome, possibly perturbing chromatin condensation and gene expression.


Assuntos
Animais , Masculino , Camundongos , Espermatócitos/fisiologia , Espermatócitos/ultraestrutura , Cromossomo X/fisiologia , Cromossomo Y/fisiologia , Complexo Sinaptonêmico/fisiologia , Nucléolo Celular/fisiologia , Translocação Genética , Cromossomo X/genética , Cromossomo Y/genética , Complexo Sinaptonêmico/genética , Heterocromatina/fisiologia , Heterocromatina/genética , Nucléolo Celular/genética , Telômero/fisiologia , Telômero/genética , Prófase Meiótica I/fisiologia , Prófase Meiótica I/genética , Heterozigoto
12.
Annu Rev Genet ; 50: 175-210, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27648641

RESUMO

Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.


Assuntos
Troca Genética , Quebras de DNA de Cadeia Dupla , Meiose , Aneuploidia , Animais , Reparo do DNA , Prófase Meiótica I , Processamento de Proteína Pós-Traducional , Recombinação Genética , Complexo Sinaptonêmico/fisiologia
13.
Yi Chuan ; 37(11): 1160-6, 2015 11.
Artigo em Chinês | MEDLINE | ID: mdl-26582530

RESUMO

The synaptonemal complex (SC) is a huge structure which assembles between the homologous chromosomes during meiotic prophase I. Drosophila germ cell-specific nucleoprotein C(2)M clustering at chromosomes can induce SC formation. To further study the molecular function and mechanism of C(2)M in meiosis, we constructed a bait vector for C(2)M and used the yeast two-hybrid system to identify C(2)M interacting proteins. Forty interacting proteins were obtained, including many DNA and histone binding proteins, ATP synthases and transcription factors. Gene silencing assays in Drosophila showed that two genes, wech and Psf1, may delay the disappearance of SC. These results indicate that Wech and Psf1 may form a complex with C(2)M to participate in the formation or stabilization of the SC complex.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Drosophila/fisiologia , Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido , Sequência de Bases , Proteínas de Ciclo Celular/genética , Biologia Computacional , Proteínas de Drosophila/genética , Dados de Sequência Molecular , Complexo Sinaptonêmico/fisiologia
14.
FEBS J ; 282(13): 2458-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25817724

RESUMO

In meiosis, homologous chromosomes face the obstacle of finding, holding onto and segregating away from their partner chromosome. There is increasing evidence, in a diverse range of organisms, that centromere-centromere interactions that occur in late prophase are an important mechanism in ensuring segregation fidelity. Centromere pairing appears to initiate when homologous chromosomes synapse in meiotic prophase. Structural proteins of the synaptonemal complex have been shown to help mediate centromere pairing, but how the structure that maintains centromere pairing differs from the structure of the synaptonemal complex along the chromosomal arms remains unknown. When the synaptonemal complex proteins disassemble from the chromosome arms in late prophase, some of these synaptonemal complex components persist at the centromeres. In yeast and Drosophila these centromere-pairing behaviors promote the proper segregation of chromosome partners that have failed to become linked by chiasmata. Recent studies of mouse spermatocytes have described centromere pairing behaviors that are similar in several respects to what has been described in the fly and yeast systems. In humans, chromosomes that fail to experience crossovers in meiosis are error-prone and are a major source of aneuploidy. The finding that centromere pairing is a conserved phenomenon raises the possibility that it may play a role in promoting the segregation fidelity of non-exchange chromosome pairs in humans.


Assuntos
Centrômero/fisiologia , Pareamento Cromossômico , Meiose , Animais , Segregação de Cromossomos , Humanos , Complexo Sinaptonêmico/fisiologia
15.
Proc Natl Acad Sci U S A ; 111(47): E5059-68, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25380597

RESUMO

Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites ("crossover interference"). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object.


Assuntos
Troca Genética , Sordariales/genética , Complexo Sinaptonêmico/fisiologia , Genes Fúngicos
16.
J Exp Bot ; 64(8): 2139-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23554258

RESUMO

In barley (Hordeum vulgare L.), chiasmata (the physical sites of genetic crossovers) are skewed towards the distal ends of chromosomes, effectively consigning a large proportion of genes to recombination coldspots. This has the effect of limiting potential genetic variability, and of reducing the efficiency of map-based cloning and breeding approaches for this crop. Shifting the sites of recombination to more proximal chromosome regions by forward and reverse genetic means may be profitable in terms of realizing the genetic potential of the species, but is predicated upon a better understanding of the mechanisms governing the sites of these events, and upon the ability to recognize real changes in recombination patterns. The barley MutL Homologue (HvMLH3), a marker for class I interfering crossovers, has been isolated and a specific antibody has been raised. Immunolocalization of HvMLH3 along with the synaptonemal complex transverse filament protein ZYP1, used in conjunction with fluorescence in situ hybridization (FISH) tagging of specific barley chromosomes, has enabled access to the physical recombination landscape of the barley cultivars Morex and Bowman. Consistent distal localization of HvMLH3 foci throughout the genome, and similar patterns of HvMLH3 foci within bivalents 2H and 3H have been observed. A difference in total numbers of HvMLH3 foci between these two cultivars has been quantified, which is interpreted as representing genotypic variation in class I crossover frequency. Discrepancies between the frequencies of HvMLH3 foci and crossover frequencies derived from linkage analysis point to the existence of at least two crossover pathways in barley. It is also shown that interference of HvMLH3 foci is relatively weak compared with other plant species.


Assuntos
Cromossomos de Plantas/genética , Hordeum/genética , Estágio Paquíteno/genética , Arabidopsis/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/fisiologia , Troca Genética/genética , Troca Genética/fisiologia , Ligação Genética/genética , Ligação Genética/fisiologia , Loci Gênicos/genética , Loci Gênicos/fisiologia , Genoma de Planta/genética , Genoma de Planta/fisiologia , Hordeum/fisiologia , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Estágio Paquíteno/fisiologia , Filogenia , Alinhamento de Sequência , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/fisiologia
17.
Yi Chuan ; 34(2): 167-76, 2012 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-22382058

RESUMO

The synaptonemal complex (SC) is a super protein lattice that connects paired homologous chromosomes in most meiotic systems. This special organization is related to the meiosis processes such as homologous chromosomes pairing, synapsis, recombination, segregation, etc. Flaws of it would lead the meiocytes to apoptosis, which contributes to sterility. In recent years, the study of this complex has been a hotspot in meiosis research, but little was known about its exact mechanism. This review summarized the organization, function, and genetics of this complex with recent advances. Prospects of its further study were also briefly discussed..


Assuntos
Complexo Sinaptonêmico/fisiologia , Animais , Apoptose , Humanos , Meiose , Recombinação Genética , Complexo Sinaptonêmico/genética
18.
Exp Cell Res ; 318(12): 1340-6, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22394509

RESUMO

The synaptonemal complex (SC) is a proteinaceous structure of chromosome bivalents whose assembly is indispensable for the successful progression of the first meiotic division of sexually reproducing organisms. In this mini-review we will focus on recent progress dealing with the composition and assembly of the mammalian SC. These advances mainly resulted from the systematic use of knockout mice for all known mammalian SC proteins as well as from protein polymerization studies performed in heterologous systems.


Assuntos
Mamíferos/fisiologia , Meiose/fisiologia , Multimerização Proteica/fisiologia , Recombinação Genética/fisiologia , Complexo Sinaptonêmico/fisiologia , Animais , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Meiose/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Multimerização Proteica/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Recombinação Genética/genética , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
19.
Annu Rev Physiol ; 74: 425-51, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22335798

RESUMO

We review the critical events in early meiotic prophase in Drosophila melanogaster oocytes. We focus on four aspects of this process: the formation of the synaptonemal complex (SC) and its role in maintaining homologous chromosome pairings, the critical roles of the meiosis-specific process of centromere clustering in the formation of a full-length SC, the mechanisms by which preprogrammed double-strand breaks initiate meiotic recombination, and the checkpoints that govern the progression and coordination of these processes. Central to this discussion are the roles that somatic pairing events play in establishing the necessary conditions for proper SC formation, the roles of centromere pairing in synapsis initiation, and the mechanisms by which oocytes detect failures in SC formation and/or recombination. Finally, we correlate what is known in Drosophila oocytes with our understanding of these processes in other systems.


Assuntos
Cromossomos/fisiologia , Drosophila/fisiologia , Meiose/fisiologia , Prófase Meiótica I/fisiologia , Oócitos/fisiologia , Animais , Núcleo Celular/fisiologia , Centrômero/fisiologia , Pareamento Cromossômico/fisiologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Feminino , Humanos , Oócitos/crescimento & desenvolvimento , Estágio Paquíteno/fisiologia , Complexo Sinaptonêmico/fisiologia , Telômero/fisiologia
20.
Curr Biol ; 21(21): 1845-51, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22036182

RESUMO

The pairing of homologous chromosomes and the intimate synapsis of the paired homologs by the synaptonemal complex (SC) are essential for subsequent meiotic processes including recombination and chromosome segregation. Here we show that the centromere clustering plays an important role in initiating homolog synapsis during meiosis in Drosophila females. Although centromeres are not clustered prior to the onset of meiosis, all four pairs of centromeres are actively clustered into one or two masses during early meiotic prophase. Within the 16-cell cyst, centromeric clustering appears to define the first step in the initiation of synapsis. Clustering is restricted to the nuclei that form the SC and is dependent on all known SC proteins. Surprisingly, both centromeric clusters and the SC components associated with them persist long after the disassembly of the euchromatic SC at the end of pachytene. The initiation of homologous recombination through the formation of programmed double-strand breaks (DSBs) is not required for either the formation or the maintenance of the centromeric clusters. Our data support a view in which the SC-mediated clustering at the centromeres is the initiating event for meiotic synapsis.


Assuntos
Drosophila/genética , Animais , Centrômero/fisiologia , Pareamento Cromossômico , Segregação de Cromossomos , Cromossomos , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Feminino , Recombinação Homóloga , Oócitos/fisiologia , Complexo Sinaptonêmico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...